Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015 pp. 34-36

© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

A New Algorithm for Generating Pseudo
Random Number Sequence

Vikas Pareek’, Harshita Gupta?, Jhilmil Gupta®,
Shreya Chatterjee® and Astha Jain®

12345Banasthali University, Newai, Tonk
E-mail: ‘er_pareekvikas@yahoo.co.in, “gupta.harshital2@gmail.com, %jhilmil271994@gmail.com,
*chatterjeeshreya.felix@gmail.com, *jainasthal994@gmail.com

Abstract—Pseudo random number generation is an area of study
vital to cryptography, gaming, modeling and numerous other fields.
Taking inspiration from the phenomenon of ball-collision, which is
an excellent example of random movement, we have proposed a novel
algorithm for generating pseudo random bits using the ball-collision
model proposed by us. In the end, we have discussed about a
standard testing suite, the NIST test suite, which needs to be passed,
for the generated sequence to exhibit good quality randomness.

1. INTRODUCTION

For that which may seem random to us, is actually determined

Even the most unordered things in nature have an underlying
orderliness. The challenge lies in finding order from this
chaos. To defeat this challenge in the technical world, various
deterministic algorithms have been put forward, which
generate seemingly random numbers.

Deterministic algorithms are those which, given a particular
input, will always produce the same output. But the beauty of
these algorithms (speaking in context of random number
generation), is that even if one has the algorithm, one cannot
determine the output, unless the key/seed is available, thus
making the output seem random to user.

A random number is a number generated by a process, whose
outcome is unpredictable, and which cannot be subsequently
reliably reproduced. In most cases, the determination of
randomness is done, not for one particular number, but for a
sequence of independent random numbers with a specified
distribution. Random numbers can be generated using
computer, by two approaches: True Random Number
Generator(TRNG) and Pseudorandom Number
Generator(PRNG).

TRNG is a generator which produces true random numbers by
extracting randomness from any physical phenomenon and
introducing it into a computer[19].

PRNG is also known as quasi-random number generator[2]
.The basic idea of a PRNG is to take a few truly random bits

as input(also known as the ‘seed’ value), and generate a
sequence of n bits that appear to be random.

2. PROPOSED ALGORITHM

1) CONCEPT

On observing and pondering upon the various natural
phenomena occurring around us, one can be marveled at
finding underlying orderliness in those which seem random.
The phenomenon which inspired this algorithm is the collision
of a ball, when moved inside a container, with the walls of the
container. This ball, if given an initial push, keeps moving
around in the container, hitting its walls one by one, until
stopped by an external force. In this process, the ball does not
follow any predefined trajectory. Its movement is random and
chaotic.

The key idea behind our algorithm is to capture the random
movement of a ball inside a 2-dimensional frame. We give the
ball an initial push, by providing it with seed values (i.e., the
initial angle along which the ball will move and the initial
distance from where the ball will start moving). By keeping a
track on the ball’s movement, we will be able to capture the
exact points at which the ball hits the walls one by one. These
random points will be outputted as random numbers/bits. Thus
at the end of ‘n’ iterations, a sequence of random numbers is
generated (where ‘n’ denotes the number of random
numbers/bits requested by the user).

Further, to increase the randomness of the numbers, we have
introduced 8 such containers, with varying sizes. There will be
a ball in each container. A container is chosen randomly, the
ball inside it is moved, and its position is captured. Using that
position, the next container is selected. Thus, with each pass, a
different container is selected and its respective ball
movement captured. Since the size of each container is kept
different, the numbers generated are evenly spread over the
range (from very small numbers to very large numbers).

Following is an algorithm explaining the working of our
code:-

A New Algorithm for Generating Pseudo Random Number Sequence 35

3. ALGORITHM

/* Frames taken will be 2-dimensional and each frame will be
of different parameters (length and breadth).

Seeds are taken as inputs from a True Random Number
Generator(from Random.org). Among the seeds are:-

Angle, at which the ball will be inclined for its movement; this
angle will be with respect to the axis parallel to the wall on
which it is positioned.

Distance, from where the ball will start its movement; this
distance will be along the axis parallel to the wall on which it
is positioned.

Frame Initiator, a number selecting one of the 8 frames, in
which the next ball movement will take place.

All the distances are captured either along the x-axis or the y-
axis, according to where the ball is positioned. The frames are
set such that the origin of the frame is the lower limit of the
range provided by user and the other 3 corners are plotted as
per the highest limit of the range provided.

*/

Step 1: Input the following from the user:-

(1 Whether user wants a sequence of random numbers,
or sequence of random bits.
(i) If random numbers then maximum range of the

sequence of numbers to be generated.
(iii) How many numbers/bits to be generated?
Step 2: Convert the frame initiator into a binary string.

Step 3: From the binary string, extract the last 3 bits. Convert
them into a decimal number.

Step 4: According to the decimal number generated, a frame is
selected.

Step 5: Ball is moved inside the selected frame according to
the previously stored values of seeds of this particular frame
(at the intended angle and from the intended distance).

Step 6: The position where the ball hits a wall inside the
frame, after its movement, is captured. The angle with which
the ball hits the wall is also captured.

/* Position here indicates the distance of the ball from the set
origin, along the axis parallel to the wall on which the ball is
positioned. */

Step 7: The position and angle are stored for future movement
of the ball inside this particular frame.

Step 8: If user wants random numbers, go to Step 9. If user
wants random bits, go to Step 10.

Step 9: Output the captured position as the next random
number.

Step 10: Convert the position into a bit and output this bit as
the next random bit.

Step 11: Concatenate the generated bit with the previous
binary sequence generated in Step 2.

Step 12: Go to step 3.
Step 13: Exit when the required number of bits are generated.
EXAMPLE:-

Seed values-> angle=56
Maximum value=10000
Minimum value=100
Position=500

No. of numbers/bits=10
Output-> 4259.511
2871.2126

4007.0022

615.7717

4396.685

1139.3693

3043.0383

120.86505

2480.77

3150.6296

4. RESULTS AND DISCUSSIONS

A. Statistical Testing

After the algorithm has been defined, it is supposed to be
checked for the correctness of results. A sequence is
considered random when it passes a set of statistical tests in
polynomial time. The result of these tests is successful if the
set of tests cannot successfully distinguish between a sequence
of true random numbers and the one generated by us. For
convenience, NIST provides a set of predefined tests to ensure
the randomness of the generated sequence.

THE NIST TEST SUITE

e Frequency (Monobits) test:

e Test for Frequency within a block:

e Runstest:

e Test for the longest run of ones in a block:

e Random Binary Matrix Rank Test:

o Discrete Fourier Transform (Spectral) Test:

e Non-Overlapping (Aperiodic) Template Matching Test:
e Overlapping (Periodic) Template Matching Test:

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

36 Vikas Pareek, Harshita Gupta, Jhilmil Gupta, Shreya Chatterjee and Astha Jain

e Maurer's Universal Statistical Test:
e Linear Complexity Test:

e Serial Test:

e Approximate Entropy Test:

e Cumulative Sum (Cusum) Test:

e Random Excursions Test:

e Random Excursions Variant Test

From the NIST suite, we find that the proposed algorithm
passes its test if the length of the sequence is small (1000), but
for larger (10°%) lengths, the algorithm becomes slow and does
not pass NIST criteria

B. Scatter plot of the numbers generated

A graph of the numbers generated, with respect to time is
plotted to see how uniformly the numbers are distributed over
a given range.

<10 Scatter Plot
5 :
R T T .o
45k, o J
" L S T T S S .ot L A + 4
4t L . .., A
agl *e * ¢ . b PR R T T
e . - . *
.
o
e e e vas e b s P
c 255 4 v g L R . M K
R : .o : -
MR .t"”"v‘*g.'»w.'“‘v 1Y
S e e K Rt 3
15*:..;;“ ORI REA Iz ‘.. ; s e
A RS Rt AR T
P e e e,....sw..... e ey IRAETOAT
ton « Bre, Y KR‘._
TR 5 fo.4 e » '+ " ...‘ 03
.‘,». AR 0‘“. ,g,o? L5 4"
+ s+ ““ +,
05 s '*’k‘n' .ﬁtw\ €V~3m~3’~wa »,’vg, ‘-{.(&
g«; . “:‘Q" }' ’¢.¢ :
7 o B v,:',:r,;,‘ :;.,:', 8:;& :.,,..,ﬁq :3‘.

0 100 200 300 400 500 G600 700 800 900 1000
Time

5. CONCLUSION

As shown in the scatter plot above, and as deciphered from the
NIST test suites’s results, this algorithm exhibits reasonable
randomness, and is hence suitable for simple modeling and
simulation uses. However it can be improved further to make
it suitable for cryptographically secure applications.
REFERENCES
[1] Ankur Rathi, Divyanjali Sharma, and Vikas Pareek, A New
Approach to Pseudo random Number generation, “4th
International Conference on Advanced Computing &
Communication Technologies (ACCT)”, published in IEEE
Xplore and Digital Library by CPS, 8-9 February 2014. ISBN:
978-1-4799-4910-6/14 2014 IEEE, DOl:
10.1109/ACCT.2014.26, pp. 290-295.

[2] M.Blum and S.Micali, "How to generate cryptographically
strong sequences of pseudo-random bits”, November 1984.

[3] D.Knuth, “The Art of Computer Programming: Seminumerical
Algorithms”, Vol. 2, Addison-Wesley Pub. Co. 1981.

[4] Stephen K.Park and Keith W.Miller, “Random Number
Generators: Good Ones Are Hard To Find”, October 1988.

[5] Pascal Junod, “Cryptographic Secure Pseudo-Random Bits
Generation: The Blum-Blum-Shub Generator”, August 1999.

[6] Pat Burns, “Linear, Congruential Random Number Generators”,
2004.

[71 Chung Chih Li and Bosum, “Using Linear Congruential
Generator for Cryptographic Purposes”.

[8] D.T. Downham and FD.K. Roberts,
Congruential Number Generators”.

[9] Lenure Blum, Manuel Blum and Michael Shub, “Comparison of
two pseudo-random number generators”, 1983.

[10] Marsaglia, “Random Number Generators”, 2003.
[11] Brian Gerhardt, “Cryptographic PseudoRandom Numbers”
[12] Bruce Schneier, “Applied Cryptography”, 2" Edition.

[13] J.Plumstead, “Inferring a sequence generated by a Linear
Congruence”, 1982.

[14] Dromey, “How to solve it by Computer”,
India, 2008.

[15] A.Shamir, “On the generation of cryptographically strong
pseudo random sequences”, February 1978.

[16] Josefin Agerblad, Martin Andersen, “Provably Secure Pseudo-
Random Generators: A Literary Study”

[17] William Stallings, “Cryptography and Network Security:
Principles and Practice”, Fifth Edition, Pearson Education, Inc.,
Prentice Hall, 2011

[18] A.J. Menzes, S.A. Vanstone, P.C.V. Oorschot, “Handbook of
Applied Cryptography”, 1% Edition, CRC Press, Inc., Boca
Raton, FL, USA, 1996

[19] https://www.random.org/
[20] http://www.cs.indiana.edu/~kapadia/project2/nodell.html

[21] http://crypto.stackexchange.com/questions/3454/blum-blum-
shub-vs-aes-ctr-or-other-csprngs

[22] http://lwww.anomaly.org/Thinair/charactr.html
[23] http://www.pit-claudel.fr
[24] http://www.nist.gov

“Multiplicative

Pearson Education,

Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 2, Number 8; April-June, 2015

